Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Hua-Wei Ren,^a Zhao-Di Liu,^b Yang Qu,^b Min-Yu Tan^b and Hai-Liang Zhu^a*

^aDepartment of Chemistry, Wuhan University of Science and Engineering, Wuhan 430073, People's Republic of China, and ^bDepartment of Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China

Correspondence e-mail: hailiang_zhu@fync.edu.cn

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(\text{C-C}) = 0.006 \text{ Å}$ R factor = 0.049 wR factor = 0.084Data-to-parameter ratio = 16.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Diaqua(2,2'-bipyridyl)(2,2'-dihydroxy-[1,1']-binaphthalene-3,3'-dicarboxylato)cadmium(II) *N,N*-dimethylformamide solvate

The title compound, $[Cd(C_{22}H_{12}O_6)(C_{10}H_8N_2)(H_2O)_2]$ - C_3H_7NO , is a mononuclear cadmium(II) complex, which is coordinated by two water molecules, two N atoms from a bipyridyl ligand and one carboxyl O atom from the binaphthalene ligand, forming a trigonal–bipyramidal geometry. A molecule of N_iN -dimethylformamide solvent is also present in the asymmetric unit. The crystal structure is stabilized by hydrogen bonds, forming a three-dimensional network.

Received 6 June 2004 Accepted 7 June 2004 Online 12 June 2004

Comment

The non-linear optical activities of d^{10} transition metal complexes, especially those of cadmium(II) (Ayyappan *et al.*, 2002; Evans & Lin, 2001a,b), have received considerable attention recently. The d^{10} configuration of the metal center and the π^* orbitals of the ligands are combined to produce low-lying metal-to-ligand charge-transfer and intra-ligand transitions, which significantly affect the emission behavior of these systems. Our interest in the non-linear optical activity of cadmium complexes has led us to the title complex, (I), a new mononuclear cadmium complex. As a part of the study, we have analysed its crystal structure.

(I) is a new, five-coordinate, complex of the bna ligand (bna = 2,2'-dihydroxy[1,1']binaphthalene-3,3'-dicarboxylate), in which two N atoms are from 2,2'-bipyridyl, one O atom is from the bna ligand, and the other O atoms are from the water molecules. As shown in Fig. 1, it has a trigonal-bipyramidal geometry. The average Cd—N distance is 2.357 (3) Å. The distances between Cd1 and the two water molecules are 2.250 (4) and 2.385 (3) Å. The Cd1—O1 bond [2.290 (3) Å] is shorter than those in a similar bna—Cd^{II} complex (Zheng *et al.*, 2004). In addition, the bna ligand is in the monodentate coordination mode, in contrast to the modes described by Zheng *et al.* (2004) for the other complex.

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved All the O atoms of the aqua ligands and the other O atoms from the bna ligand and *N*,*N*-dimethylformamide contribute to intermolecular hydrogen bonds, forming a three-dimensional network (Fig. 2).

Experimental

An $(Me)_2NCHO/H_2O$ [1:5 (v/v), 10 ml] solution containing $Cd(NO_3)_2\cdot 4H_2O$ (0.154 g, 0.5 mmol), 2,2'-bipyridyl (0.039 g, 0.25 mmol) and H_2 bna (0.187 g, 0.5 mmol) was stirred for 1 h in air, and then placed in an 18 ml Parr Teflon-lined stainless-steel vessel). The vessel was sealed and heated at 423 K for 48 h, cooled to 373 K at a rate of 281 K h⁻¹, and held for 10 h, followed by further cooling to room temperature. Yellow crystals of (I) were collected, washed with water, and dried in a vacuum using CaCl₂ (yield 49.6%). Elemental analysis: found C: 56.32; H, 4.22; N, 5.51%. calc. for $CdC_{35}H_{31}N_3O_9$: C, 56.05; H, 4.17; N, 5.60%.

Crystal data

$[Cd(C_{22}H_{12}O_6)(C_{10}H_8N_2)-$	$D_x = 1.480 \text{ Mg m}^{-3}$
$(H_2O)_2]\cdot C_3H_7NO$	Mo $K\alpha$ radiation
$M_r = 750.03$	Cell parameters from 3369
Monoclinic, $P2_1/c$	reflections
a = 14.376 (6) Å	$\theta = 5-28^{\circ}$
b = 20.576 (8) Å	$\mu = 0.71 \text{ mm}^{-1}$
c = 11.383 (4) Å	T = 293 (2) K
$\beta = 90.301 \ (7)^{\circ}$	Block, yellow
$V = 3367 (2) \text{ Å}^3$	$0.28 \times 0.22 \times 0.16 \text{ mm}$
Z = 4	

Data collection

Bruker SMART CCD area-detector diffractometer	7134 independent reflections 3369 reflections with $I > 2\sigma(I)$
	* /
φ and ω scans	$R_{\rm int} = 0.067$
Absorption correction: multi-scan	$\theta_{\text{max}} = 27.0^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -18 \to 18$
$T_{\min} = 0.827, T_{\max} = 0.895$	$k = -26 \rightarrow 18$
19183 measured reflections	$l = -13 \to 14$

Refinement

Refinement on F^2	H-atom parameters constrained		
$R[F^2 > 2\sigma(F^2)] = 0.049$	$w = 1/[\sigma^{\bar{2}}(F_o^2) + (0.02P)^2]$		
$wR(F^2) = 0.084$	where $P = (F_o^2 + 2F_c^2)/3$		
S = 0.96	$(\Delta/\sigma)_{\text{max}} = 0.002$		
7134 reflections	$\Delta \rho_{\text{max}} = 0.63 \text{ e Å}^{-3}$		
433 parameters	$\Delta \rho_{\min} = -0.54 \text{ e Å}^{-3}$		

Table 1 Hydrogen-bonding geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-H\cdots A$
$O1W-H1WA\cdots O2^{i}$	0.86	2.37	3.225 (5)	170
$O1W-H1WB\cdots O4^{ii}$	0.86	2.00	2.792 (4)	153
$O2W-H2WB\cdots O5^{ii}$	0.87	2.37	3.052 (4)	135
$O2W-H2WB\cdots O4^{ii}$	0.87	2.56	3.372 (4)	156
$O3-H3A\cdots O2$	0.87	1.90	2.588 (4)	135
O6-H6RO5	0.87	1.86	2 553 (4)	135

Symmetry codes: (i) $x, \frac{3}{2} - y, z - \frac{1}{2}$; (ii) 1 - x, 2 - y, -z.

All H atoms were located in Fourier maps and refined as riding, with C—H distances in the range 0.96–1.00 Å and O—H distances in the range 0.85–0.88 Å, and with $U_{\rm iso}({\rm H})=1.2U_{\rm eq}({\rm C},{\rm O})$ or $1.5U_{\rm eq}({\rm C})$ (C33 and C34).

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve

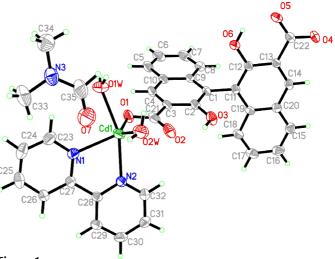


Figure 1
The structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

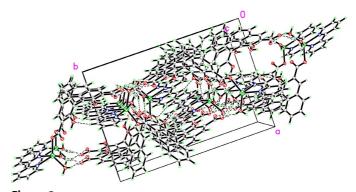


Figure 2 The crystal packing of (I), showing the $O-H\cdots O$ hydrogen-bonding interactions as dashed lines.

structure: *SHELXS*97 (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

The authors thank the Education Office of Anhui Province, People's Republic of China, for research grant No. 2004kj300zd.

References

Ayyappan, P., Evans, O. R., Cui, Y., Wheeler, K. A., & Lin, W. (2002). *Inorg. Chem.* 41, 4978–4980.

Evans, O. R. & Lin, W. (2001a). Chem. Mater. 13, 2705-2712.

Evans, O. R. & Lin, W. (2001b). Chem. Mater. 13, 3009-3017.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Sheldrick, G. M. (1997b). SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Zheng, S.-L., Yang, J.-H., Yu, X.-L., Chen, X.-M. & Huang, W.-T. (2004). Inorg. Chem. 43, 830–838.